Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/neural/9996
Create:
Last Update:

🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI

BY Neural Networks | Нейронные сети




Share with your friend now:
tg-me.com/neural/9996

View MORE
Open in Telegram


Neural Networks | Нейронные сети Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Neural Networks | Нейронные сети from us


Telegram Neural Networks | Нейронные сети
FROM USA